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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

Maple

> solve(xs —x + 1);
ROOfOf(_ZS — Z+ 1, index = 1), ROOfOf(_ZS — Z+1, indexZZ), ROOfOf(_ZS — Z+1, indexZB),

RootOf(_Z5 — Z+ 1, index = 4), RootOf(_Z5 — Z+ 1, index = 5)
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

Maple
_> solve(xs —x + 1);
ROOfOf(_ZS — Z+ 1, index = 1), ROOfOf(_ZS — Z+ 1, index = 2), ROOfOf(_ZS — Z+ 1, index = 3),

RootOf(_Z5 — Z+ 1, index = 4), RootOf(_Z5 — Z+ 1, index = 5)

> ﬁmt’ve(;vc5 —x + l);

-1.167303978
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

Maple
_> Sohfe(xs —x + 1);
ROOfOf(_ZS — Z+ 1, index = 1), ROOfOf(_ZS — Z+ 1, index = 2), ROOfOf(_ZS — Z+ 1, index = 3),

RootOf(_Z5 — Z+ 1, index = 4), RootOf(_Z5 — Z+ 1, index = 5)

> ﬁot’ve(x5 —x + l);

-1.167303978

> eva{f(so[ve(xs —Xx+ 1) );
0.764884433600585 + 0.352471546031726 1, —-0.181232444469875 + 1.08395410131771 1,

—-1.16730397826142, —0.181232444469875 — 1.08395410131771 1, 0.764884433600585
— 0.352471546031726 1
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

Maple

> evalf(so[ve(xs —x + l) );
0.764884433600585 + 0.352471546031726 1, —0.181232444469875 + 1.08395410131771 1,

—-1.16730397826142, -0.181232444469875 — 1.08395410131771 1, 0.764884433600585

— 0.352471546031726 1
Bertini finite_solutions
. 5
input

7.648844336005847e-01 -3.524715460317264e-01
variable_group X,

function f;
~ -1.812324444698754e-01 1.083954101317711e+00
f=x"b -x + 1;

7.648844336005849e-01 3.524715460317262e-01

-1.167303978261419e+00 -2.220446049250313e-16

-1.812324444698754e-01 -1.083954101317711e+00
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

What does it mean to solve? Some examples include:
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

What does it mean to solve? Some examples include:

» Show that a solution exists

» Computing upper bounds on rank of a tensor

Strassen (1969): rank M, < 7 showing w <log, 7 < 3

a b] [AB] [aA+b-C a-B+b-D]| _[I+IV-V+VI I+ Vv

c d C D| |c-A+d-C ¢c-B+d-D| I+ 1v [ — 11+ 1+ VI
I+ (a+d)-(A+D) V: (a+b)-D
I ( c+d)-A VIi: (c—a) - (A+B)
I (( % VIl : (b—d)-(C+D)
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

What does it mean to solve? Some examples include:

» Compute all isolated solutions (over C or R).

» Number of assembly configurations

planar pentad spherical pentad Stewart-Gough plaftorm
SE(2) SO(3) SE(3)
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

What does it mean to solve? Some examples include:

» Describe all irreducible components.
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

Generally speaking:

» Algebraic methods prefer vastly over-determined systems

» fewer “new” polynomials to compute
» Bardet-Faugere-Salvy (2004)

» Numerical algebraic geometry prefers well-constrained systems
of low degrees with coefficients of roughly unit magnitude

» codimension = # equations
» stable under perturbations
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

What does it mean to numerically solve?
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Overview

For a polynomial system f : C" — CN, solve f(x) = 0.

What does it mean to numerically solve?

Need two key aspects:

» compute sufficiently accurate numerical approximation

» have an algorithm that can produce approximations of solution
to any given accuracy starting from numerical approximation

» sufficiently accurate depends on the algorithm
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Overview

What does it mean to numerically solve?

» compute sufficiently accurate numerical approximation

» have an algorithm that can produce approximations of solution
to any given accuracy starting from numerical approximation

Example
f(x) =x>—2=0

» xo = 1 is numerical solution associated with Newton's method
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Example

Overview

f(x) =x>—2=0

» xo = 1 is numerical solution associated with Newton's method

Xk+1 = Xk — Jf(Xk)_lf(Xk)

1

1.5
1.416666666666666666666666666666666666666666666666 7
1.4142156862745098039215686274509803921568627450930
1.4142135623746899106262955788901349101165596221157
1.4142135623730950488016896235025302436149819257762
1.4142135623730950488016887242096980785696718753772

1.41421356237309504880168872420969380785696718753769
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Overview

Double-edged sword of Newton's method:
» Qudaratic convergence near nonsingular solutions
» Slow convergence or divergence near singular solutions

» Difficulty away solutions (chaos, limit cycles, etc)




Overview

Foundations of Numerical Algebraic Geometry:

» Continuation and path tracking

x(t) correct

predict

I At I

» Constructing homotopies

0 1 1

® f(2) H(z(t),t) =0 P g(2)

H = {1—#)f(2) +talz)

» Witness sets

» Numerical lrreducible Decomposition
» Other computations using witness sets




Continuation

Continuation from complex analysis:
» Cauchy (1789-1857), Riemann (1826-1866), Mittag-Leffler (1846-1927)

» Implicit function theorem

» Analytic extension of functions (analytic continuation)

Big picture idea:

» solutions “continue’ locally under small parameter changes
x(p)

ish p @& ICeErm



Example Continuation
f(x;p) =x*—p=0 x(p)

Locally near p = 1:

n)! '
\/7 Z4n1_2n )( _1)

» converges for |[p — 1| <1 2
@

2 0 2
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Example Continuation
f(x;p) =x*—p=0 x(p)

Locally near p = 1:

n)! .
VP = Z4”1—2n )( p—1)

» converges for |[p — 1| <1 2
@

2 0 2

Use continuation to extend beyond this domain.
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Example Continuation
f(x;p) =x>—p=0

Continue the solution x =1atp=1top =1+ 2I.

peC
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Continuation
Numerically track along the path x(t) satisfying H(x(t).t) = O:
» (Predictor) Estimate x(t + At) from x(t) by discretizing
using the Davidenko differential equation (1953):

H=0 >(iH:O—% x(t) = —JH(x(t). t) LI H(x(1). t)

» Constant, Euler, Heun, Runge-Kutta, Runge-Kutta-Fehlberg, ....

» (Corrector) for each t, apply Newton's method to H(e.t) =0

X( f) correct

predict

e——
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Continuation

Locally adapt both stepsize and floating-point precision:

» Bates-H.-Sommese-Wampler (2008,2009), Bates-H.-Sommese (2011)

Log of Cond., Number
- o o

- / k\\ﬂ/" p‘“\_\
*ﬁ_ww_____ ___A_/—\_/J'l V—_\"FMMKM‘WJ'-#
! ! L L L
02 ) 04 05 0a 08
100
= x(t) correct
c
E B predict
e
- fe——r—
g™ At
= 0 1 1

=

Stepsize
ENEE
— \—‘

| JL— B
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Continuation N

ta—np—

Certified tracking (select stepsize to guarantee to track path):

» Shub-Smale ( "Bézout series” 1990s), Beltran-Leykin (2011,2012),
H.-Liddell (2016), Xu-Burr-Yap (2018), ...

Smale's 17" problem: polynomial time to compute a root
» Beltran-Pardo (2009, 2011), Cucker-Biirgisser (2011), Lairez (2017)

Pierre Lairez: 2017 SIAG/AG Early Career Prize
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Example

f(x; p) = x

Track around a loop:  x(e

g

peC

Ish

2

Continuation
—p=0

f&'")
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Example Continuation

f(x;p) =x>—p=0

Track around a loop: X(E‘m)

\{

|
—

v
> T
|
&N O
X X
|
|
—

-

=

\

real(x)

cycle number = winding number = 2

Ish

peC

imag(x)
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Example Continuation

peC

f(x;p) =x>—p=0 O
X(efé")

Track around a loop:

» monodromy action: permutation of solutions along loop
» compute other solutions

» Duff-Hill-Jensen-Lee-Leykin-Sommars (2018),
Bliss-Duff-Leykin-Sommars (2018)

» decompose solution sets

< 2

u-\j real(x) imag(x) @: l E E r |T|



Examp|e Continuation Pet

f(x;p)=x*—p=0 C.
f@)
@ p

real(x imag(x)

Track around a loop:  x(e

» Cauchy integral theorem: computing singular endpomts

» cycle number ¢
» sufficiently small radius r > 0

1 2mwc _
x(0) = / x(re'?)d
0

2T C

» Cauchy endgame: Morgan-Sommese-Wampler (1991)

ish @& ICErm



Isolated Solutions

Find all isolated solutions of

fi(Xxt.....Xn)
f(x) = 5 =0
| fa(x1. .. Xn)
o
¢ o
o
o
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Isolated Solutions

f(x) = 5 =0

Homotopy continuation requires (Morgan-Sommese (1989)):

1. parameters to “continue”

» think of f as a member of a family F
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Isolated Solutions

Homotopy continuation requires (Morgan-Sommese (1989)):

1. parameters to “continue”

» think of f as a member of a family F

2. homotopy that describes the deformation of the parameters
» construct a deformation inside of F that ends at f

N
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Isolated Solutions

Homotopy continuation requires (Morgan-Sommese (1989)):

1. parameters to “continue”

» think of f as a member of a family F

2. homotopy that describes the deformation of the parameters
» construct a deformation inside of F that ends at f

3. start points to track along paths as parameters deform
» parallelize computation — track each path independently

s @& ICErm



|solated Solutions
Theorem

For properly constructed homotopies, with finite endpoints S C C":

» each isolated solution is contained in S

» in fact, S contains a point on every connected component

» for square systems, multiplicity = number of paths if isolated.

flz) . HE®),H=0 » g(2)

H=(1-)f(z) +tg(2)

nonsingular |
endpoint )

singular

1 ' vy .
endp()lnt © daniclle smethystbrake .. Tlmm=a=

b o 1o | @&ICErm




Isolated Solutions

Art in the construction of family F:
» number of start points

» ease to compute start points

: H(z(t),t)=0
Coefficient-Parameter } f (Z) - ( ( )’ ) > g (Z)
H=(1-1)f(z) + tg(2)
U — = —U-=- o0
— | ¥
Polynomial Newton {
| N &
Products | Polytopes C >
i F
®-—-U--- U -.
R nonsingular |
, Monomial Products endpoint Y%
easler N
start @v\ _____ U — — — — — specificity
system (fewer paths)
Linear Products v
U singular 30::
. dpoint
Multihomogeneous endpott
as endgame (000
U t =0 boundary t=1
' Total Degree

Each method is sharp for generic members of F.
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Example

f =

Ish

Isolated Solutions

x% 4+ 2x — 8
xy +2x+4y —3
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Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

» Bézout family (total degree):

gi(x.y) x?—1
{[ & (x.v) ] =8 } d [ y2 -1 ]
Number of paths = number of isolated solutions for g: 4

H=(1—-t)-f+~t-g

» v € C is used to create a general deformation

» avoid singularities that arise from tracking over real numbers

ish @& ICErm



Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

» Bézout family (total degree):

Pt e em [0

Number of paths = number of isolated solutions for g: 4

Bertini finite_solutions
1
input
p 2.000000000000000e+00 0.000000000000000e+00
varxr 1ab1 e_gr oup X , '-);r ; -1.666666666666667e-01 0.000000000000000e+00

function f1,f2;
fl = x"2 + 2%x - 8;

li_‘j f2 = xxy + 2*%x + 4%y - 3; !?;?IEEFH'I



Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

» Multihomogeneous Bézout family (Morgan-Sommese (1987)):
f{[&@)].%aaz }
g2(x.y) | deg,gr=deg, g =1
x> —1 ]
— H=((1—-t)-f+~t-
o= | ("0 dooteate

Number of paths = number of isolated solutions for g: 2

ish @& ICErm



Example Isolated Solutions

£ x? 4+ 2x — 8
| xy+2x+4y —3

» Multihomogeneous Bézout family (Morgan-Sommese (1987)):

F = {[ gl(X) ] : degx g1 — 2. }
gZ(X_y) ' degx g = degy o = 1
Number of paths = number of isolated solutions for g: 2

Bertini
input Vvariable_group Xx;
variable_group y;
function f1,f2;
fl = x"2 + 2%xx - 8;

fish f2 = xxy + 2%xx + 4xy - 3; !?;?IEEFI'I'I



Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

» Polyhedral (BKK, Huber-Sturmfels (1995)):

2

aixX: + axx + a

F = 1 2 3 ca; € C
agxXy + asX + agy + ay

x? —1

Number of paths = number of isolated solutions for g: 2

ish @& ICErm



Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

» Extra structure in the coefficients of f.

,
B V| x*=(a1+a)x+a1a | |

&~ [ (x X21)y1 1 ]

Number of paths = number of isolated solutions for g: 1

ish @& ICErm



Ish

Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

x° — (a1 + a2)x + a1a>
f_{p(x,y,a)_ [ (x —a1)y + asx + a4 'QEEC}

° [ (x le)yll ]

Since F is no longer linear, use a parameter homotopy:
H = p(x.y; a(t))

where  a(t) = (1 — 7(t))(—4.2.2,-3) + 7(t)(1,—-1,0,—1)

=1 @ICerm




Example Isolated Solutions

£ x? 4+ 2x — 8
| xy+2x+4y —3

D
B | x*—=(a1+a)x+a1ar | |

F(z,p)

Fz,p0) ; superfluous G(2)

i

i
L

same number of
paths for each p

-
-
-

-

cn many faster c" single costly Ccn
parameter solves initial solve
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Isolated Solutions

Some software options:
» Bertini
» Bertini.m2
» Hom4dPS
» HomotopyContinuation. jl
» MonodromySolver
» NAG4M2
» Paramotopy
» PHCpack

Visitors to ICERM: Bates, Brake, Chen, Duff, Hill, Lee, Leykin,

Rodriguez, Sommars, Sommese, Wampler, ...

ish @& ICErm



Ish

Isolated Solutions
Example (Alt's problem (1923))

Find all 4-bar linkages whose coupler curve passes through 9 given
general points in the plane.




Isolated Solutions
Example (Alt's problem (1923))

Find all 4-bar linkages whose coupler curve passes through 9 given
general points in the plane.

» 8652 = 6 - 1442 (Wampler-Morgan-Sommese (1992))

Their polynomial system: 4 quadratics and 8 quartics

Bézout 1,048,576 = 2%.4°
M-hom Bézout | 286,720 = 212.(})
Polyhedral 79 135
Product decomp. 18,700
Actual 8,652

ish @& ICErm
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Numbaer of Patents
E

200

-

= four-bar

o 5in-bar

eight-bar

ish

Isolated Solutions

Mechanical Design 101

US Patents: four-bar, six-bar, eight-bar linkages

1576-1980
194
3
o

1581-1985

a

1986-1990
230

a

1991-1995 1995-2000
431
1 o
Five year periods from 1976 to 2015

2001-2005
543

L S | lI ll

2006-2010

i

MECHANICAL DESIGN

EDUCATIONAL RESOURCE

20112015
ag9

989




Witness Set

Describe all solutions of

fi(xi..... Xp)
f(x) = : —0
| fi(x. Xn)
o
¢ o
o
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Witness Set

How to represent an irreducible algebraic variety A on a computer?

A

ish @& ICErm



Witness Set

How to represent an irreducible algebraic variety A on a computer?

A

» algebraic: prime ideal /(A) = {g | g(a) =0 for all a € A}

» Hilbert Basis Theorem (1890): there exists fi,.. .. f such that

ish @& ICErm



Witness Set

How to represent an irreducible algebraic variety A on a computer?

» geometric: witness set {f, L. W} where

» f is polynomial system where A is an irred. component of V(f)
» L is a linear space with codim £ = dim A

» W =LnNAwhere #W = deg A
A

L

» Witness sets “localize” computations to A effectively ignoring
other irreducible components

» Sample points from A by moving the linear slice £

i @icerm



Witness Set

Example

A= {[s3. 5%t st?. t°] | [s.t] € P!} C P® - twisted cubic curve

A

ish @& ICErm



Witness Set

Example

A= {[s3. 5%t st?. t°] | [s.t] € P!} C P® - twisted cubic curve

A

» {f.L. W} where

> f[ X12—X0X2 ]

X1 X2 — XpX3

L

» L = {[X{],XLXQ,X?,] e p3 ‘ bxg — 6x1 — 2x0 + x3 = 0} c p3
» codim L =dim A=1

( 1,3.2731,10.7130, 35.0644]. )
» W =< [1,0.8596,0.7389,0.6351]. >
\ 1,—2.1326,4.5481, —9.6995] )
» deg A =3

i @icerm




Witness Set

Numerical irreducible decomposition:

» compute a witness set for each irreducible component

ish € ICErm



Witness Set

Example o
) Bertini
> f — [ X1 T X0X2 ] input
X1 X2 — Xp0X3
CONFIG
TrackType: 1;
END;
INPUT

hom_variable_group x0,x1,x2,%x3;
function f1,f2;

fl1 = x172 - x0%x2;

f2 = x1xx2 - x0%xx3;

END;

Dimension 1: 2 classified components

degree 1: 1 component

II_\j degree 3: 1 component @ lE E I_ m



Witness Set

Reduce to codimension = # equations via randomization:

Theorem (Bertini)

Let f:C" — CN and A C V(f) C C" be an irreducible component
with codim A= c. If R € C°*N s general, then

» A is an irreducible component of V(R - f)

» V(R -f)\ V(f) is either empty or smooth of codimension c.

ish @& ICErm



Witness Set

Reduce to codimension = # equations via randomization:

Theorem (Bertini)

Let f:C" — CN and A C V(f) C C" be an irreducible component
with codim A= c. If R € C°*N s general, then

» A is an irreducible component of V(R - f)

» V(R -f)\ V(f) is either empty or smooth of codimension c.

Example
i x12 — X0Xo
For general R € C?*3 and f = | xpx0 — x0x3
i X22 — X1X3

» V(R - f) = twisted cubic + line

ish @& ICErm



Witness Set

Example
| x=y)*-7y) |
(x — y)(8% — 259 + 2b% — bY)
(X — 9)(ax — 2ay + 2bx — by)
5b(x — y)(89 — b%)
f= ab(x — y)(ay — bx)

(abky — 3bxy)(abk — 4bx — 3by + 4by — aky + 4xy + bRy — bRy)
| (abxy — abxy)(abx — abx — aby + aby — aXy + axy + bxy — bxy) |

15 polynomials in 8 variables a. b, x. y.4,b.%. §

For general R € C3%1>;

» V(R -f)\ V(f) consists of finitely many points
» all nonsingular with respectto K-f =0

ish @& ICErm



Witness Set

Example
| x=y)*-7y) |
(x — y)(8% — 259 + 2b% — bY)
(X — 9)(ax — 2ay + 2bx — by)
5b(x — y)(89 — b%)
f= ab(x — y)(ay — bx)

(abky — 3bxy)(abk — 4bx — 3by + 4by — aky + 4xy + bRy — bRy)
| (abxy — abxy)(abx — abx — aby + aby — aXy + axy + bxy — bxy) |

15 polynomials in 8 variables a. b, x. y.4,b.%. §

For general R € C3%1>;

» V(R -f)\ V(f) consists of finitely many points
» all nonsingular with respect to K- =0
» Using Bertini: |V(R-f)\ V(f)| = 8652

» Proving this would complete proof of Alt's problem

ish @& ICErm



Ish

Witness Set

Given W C V/(f)N L, how to test that W = £ N A for some
variety A C V/(f)?

» [race test: centroid moves linearly as slices moves in parallel

@ ICerm



Witness Set

Many other numerical algebraic geometric computations can be
performed starting from witness sets, such as:

» membership testing: is x* € A?

> decide if g(x*) =0 for every g € [(A) without knowing /(A)

A ./ }
_---'O//
homotopy \ /7

/(/

ish @& ICErm



Witness Set

» projection: m(A)

» perform computations on 7(A) without knowing any

polynomials that vanish on 7(A)

A T (L)

homotopy >




Witness Set

» intersection: AN B

» special case is regeneration
> V(fh,..., fi, fks1) = V(f, . ... fk) N V(fis1) via witness sets

» compute Asing
» compute critical points of optimization problem

. xT

min ||[x* — a||2 such that a€ ANR"

@ ICerm



Witness Set

Test other algebraic properties of A
» is A arithmetically Cohen Macaulay?
» is A arithmetically Gorenstein?

» is A a complete intersection?

Ish

@ ICerm



Summary

Numerical algebraic geometry provides a toolbox for solving
polynomial systems.

» “If a problem was easy, someone else would have solved it.”
» Grobner basis computation probably did not terminate

» think carefully about what information you want/need
» art in building efficient homotopies that incorporate structure

» preconditioning is important

» transform problem into form suitable for num. computations

ish @& ICErm



Thank You!
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